NF-κB通路磷酸化抗体芯片 蛋白芯片

点击图片查看原图
单价: 5000.00
品牌: 未填写
销量: 累计出售 0
评价: 已有 0 条评价
人气: 已有 69 人关注
更新: 2021-07-26
数量: 减少 增加份 库存999份
立即购买   加入购物车
看了又看 更多>
 
 
提供商: Full Moon
服务名称: 蛋白芯片

     NF-KappaB(Nuclear Factor-KappaB)是一类主要由Rel家族成员:NF-KappaB1(p50)、 NF-KappaB2 (p52)、 RelA (p65)、 RelB和c-Rel(Rel)组成的异二聚体蛋白。在细胞受到LPS (Lipopolysaccharides)、促炎细胞因子、生长因子、淋巴因子、自由基、UV辐射、细菌和病毒感染等因素刺激后,NF-кB信号通路会被激活,从而引发细胞增殖速度加快和一系列炎性相关的细胞应答。NF-кB 信号通路与肿瘤、类风湿性关节炎、肺纤维化、哮喘、感染性休克、肾小球肾炎、动脉粥样硬化、艾滋病等多种炎性疾病关系密切。

 

       NF-KappaB 信号通路磷酸化抗体芯片 (PNK215),采用三维高分子膜专利技术,在抗体芯片片基上共价结合215种高特异抗体,并运用特有的荧光标记技术进行样本标记,以实现对NF-кB经典信号通路的高覆盖检测。抗体芯片提供信号蛋白多个关键磷酸化位点的同步检测,针对每一个特定蛋白磷酸化位点,设置一对抗体分别检测其磷酸化(Phospho)和非磷酸化(non-Phospho)状态。同时,该抗体芯片可检测多种已有文献报道的非NF-кB经典通路的信号蛋白,极大扩展NF-кB单一信号通路研究的延伸性。

 

抗体芯片特点:

           

    1. 芯片规格为76 x 25 x 1 mm;                

    2. 实现单一信号通路全面筛选;                

    3. 每种抗体设置6次技术重复;                

    4. 适用于组织、细胞等多类型样本;                

    5. 5 x106细胞、200μg总蛋白量即可满足实验;                

    6. 每个检测位点设有磷酸化和非磷酸化配对抗体;                

    7. 可通用于人、小鼠、大鼠等多类型模式生物检测。                

                    

抗体芯片原理:                

                                   

                    

                                   

                    

                

抗体芯片列表:     

 

产品列表下载请登录官网查询http://www.wayenbio.com/

 

抗体芯片文献:                

                                                

  1. 1. Gao Y, et al. Mammalian elongation factor 4 regulates mitochondrial translation essential for spermatogenesis .Nat struct mol biolcta Biol, 2016, 23(5): 441-449. ( 中国科学院生物物理研究所 )
  2. 2. Jiang HL et al. SSRP1 uppresses TGF-β-Driven Epithelial-to-Mesenchymal Transition and Metastasis in Triple-Negative Breast Cancer by Regulating Mitochondrial Retrograde Signaling, Cancer Res, 2016, 76(4):952-64(复旦大学附属肿瘤医院)

  3. 3. Kuang XY et al. The phosphorylation-specific association of STMN1 with GRP78 promotes breast cancer metastasis, Cancer Lett ,2016, 377(1):87-96(复旦大学附属肿瘤医院)

  4. 4. Chen Y, et al. The hepatitis B virus X protein promotes pancreatic cancer through modulation of the PI3K/AKT signaling pathwayCancer Lett, 2016, Jun 21;380(1):98-105. (浙大第二附属医院)

  5. 5. Zhu Y et al. Long non-coding RNA LOC572558 inhibits bladder cancer cell proliferation and tumor growth by regulating the AKT-MDM2-p53 signaling axisCancer Lett, 2016 ,Apr 26, doi:10.1016/j.canlet.2016,04(3)(复旦大学附属肿瘤医院)

  6. 6. Luo L L, Zhao L, Wang Y X, et al. Insulin-like growth factor binding protein-3 is a new predictor of radiosensitivity on esophageal squamous cell carcinoma. Sci Rep-UK, 2015, 5    (中山大学附属肿瘤医院)

  7. 7. Zhu Y P, Wan F N, Shen Y J, et al. Reactive stroma component COL6A1 is upregulated in castration-resistant prostate cancer and promotes tumor growth. Oncotarget, 2015, 6(16): 14488.    (复旦大学附属肿瘤医院)

  8. 8. Wang T, Han S, Wu Z, et al. XCR1 promotes cell growth and migration and is correlated with bone metastasis in non-small cell lung cancer. Biochem Bioph Res Co, 2015, 464(2): 635-641.   (上海长征医院)

  9. 9. Chen P, Huang H, Wu J, et al. Bone marrow stromal cells protect acute myeloid leukemia cells from anti‐CD44 therapy partly through regulating PI3K/Akt–p27Kip1 axis. Mol Carcinogen, 2015 Dec;54(12):1678-85.     (福建医科大学附属协和医院)

  10. 10. Wan F, et al. Oxidized low-density lipoprotein is associated with advanced-stage prostate cancer. Tumor Biol, 2015: 1-10.    (复旦大学附属肿瘤医院)

  11. 11. Zhu R, et al. pH sensitive nano layered double hydroxides reduce the hematotoxicity and enhance the anticancer efficacy of etoposide on non-small cell lung cancer.Acta Biomater. 2016 Jan 1;29:320-32.    (同济大学)

  12. 12. Li W, et al. Withaferin A suppresses the up-regulation of acetyl-coA carboxylase 1 and skin tumor formation in a skin carcinogenesis mouse model.Mol Carcinog. 2015 Oct 16.    (河北大学)

  13. 13. Rao W, et al. OVA66 increases cell growth, invasion and survival via regulation of IGF-1R-MAPK signaling in human cancer cells. CarcinogenesisApril 7, 2014.上海交通大学医学院

  14. 14. Jia D, et al. Amplification of MPZL1/PZR promotes tumor cell migration through Src-mediated phosphorylation of cortactin in hepatocellular carcinoma. Cell Res, 2014, (24):204-217. (上海仁济医院) 

  15. 15. Ding Y, et al. Seed-targeting anti-miR-21 inhibiting malignant progression of retinoblastoma and analysis of their phosphorylation signaling pathways. Exp Eye Res, 2014. (暨南大学) 

  16. 16. Dong S, et al. The REGγ Proteasome Regulates Hepatic Lipid Metabolism through Inhibition of Autophagy. Cell Metab, 2013, 18(3): 380-391. (华东师范大学)

  17. 17. Li L et al. REGγ deficiency promotes premature aging via the casein kinase 1 pathway. Proc Natl Acad Sci USA.2013; June 13. (华东师范大学)

  18. 18. Cui WY et al. Identification and Characterization of Poly(I:C)-induced Molecular Responses Attenuated by Nicotine in Mouse Macrophages. Mol Pharmacol. 2013; 83:61-72. (浙江大学)

  19. 19. Xu N et al. Activation of RAW264.7 mouse macrophage cells in vitro through treatment with recombinant ricin toxin-binding subunit B: Involvement of protein tyrosine, NF-κB and JAK-STAT kinase signaling pathways.Int J Mol Med. 2013; 32(3): 729-735. (吉林大学)

  20. 20. Li F et al. Superoxide Mediates Direct Current Electric Field-Induced Directional Migration of Glioma Cells through the Activation of AKT and ERK. PLoS ONE. 2013; 8(4): e61195. (第三军医大学)

  21. 21. Ranzato E et al. Epithelial mesenchymal transition traits in honey-driven keratinocyte wound healing: comparison among different honeys. Wound Repair Regen. 2012; 20(5):778-85.

  22. 22. Fan H et al. Cardioprotective Effects of Salvianolic Acid A on Myocardial Ischemia-Reperfusion Injury In Vivo and In Vitro. Evid Based Complement Alternat Med. 2012; 508938. (烟台大学)

  23. 23. Zhang YM et al. A novel angiogenesis inhibitor impairs lovo cell survival via targeting against human VEGFR and its signaling pathway of phosphorylation. Cell Death Dis. 2012; 3: e406. (西安交通大学)

  24. 24. Li Hui et al. Increased prevalence of regulatory T cells in the lung cancer microenvironment: a role of thymic stromal lymphopoietin. Cancer Immunology Immunotherapy. 2011; 60(11): 1587-1596. (天津医科大学)

  25. 25. Kang S et al. p90 ribosomal S6 kinase 2 promotes invasion and metastasis of human head and neck squamous cell carcinoma. J Clin Invest . 2010; 120(4):1165-1177.